The Ramsey Number for a Forest Versus Disjoint Union of Complete Graphs

نویسندگان

چکیده

Given two graphs G and H, the Ramsey number R(G, H) is minimum integer N such that any coloring of edges $$K_N$$ in red or blue yields a H. Let $$\chi (G)$$ be chromatic G, s(G) denote surplus cardinality color class taken over all proper colorings with colors. A connected graph called H-good if $$R(G,H)=(v(G)-1)(\chi (H)-1)+s(H)$$ . Chvátal (J. Graph Theory 1:93, 1977) showed tree $$K_m$$ -good for $$m\ge 2$$ , where denotes complete m vertices. tH union t disjoint copies Sudarsana et al. (Comput. Sci. 6196, Springer, Berlin, 2010) proved n-vertex path $$P_n$$ $$2K_m$$ $$n\ge 3$$ conjectured $$T_n$$ -good. In this paper, we confirm conjecture prove We also conclusion which $$(K_m\cup K_l)$$ -good, $$K_m\cup K_l$$ $$K_l$$ $$m>l\ge Furthermore, extend goodness to disconnected study relation between components $$\textrm{F}$$ versus show each component F H-good, then H-good. Our result implies exact value $$R(F,K_m\cup forest $$m,l\ge

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

A note on the Ramsey number and the planar Ramsey number for C4 and complete graphs

We give a lower bound for the Ramsey number and the planar Ramsey number for C4 and complete graphs. We prove that the Ramsey number for C4 and K7 is 21 or 22. Moreover we prove that the planar Ramsey number for C4 and K6 is equal to 17.

متن کامل

Generalized Ramsey Numbers for Graphs with Three Disjoint Cycles Versus a Complete Graph

Let F ,G be families of graphs. The generalized Ramsey number r(F ,G) denotes the smallest value of n for which every red-blue coloring of Kn yields a red F ∈ F or a blue G ∈ G. Let F(k) be a family of graphs with k vertex-disjoint cycles. In this paper, we deal with the case where F = F(3),G = {Kt} for some fixed t with t > 2, and prove that r(F(3),G) = 2t + 5.

متن کامل

Multicolor Ramsey Numbers For Complete Bipartite Versus Complete Graphs

Let H1, . . . ,Hk be graphs. The multicolor Ramsey number r(H1, . . . ,Hk) is the minimum integer r such that in every edge-coloring of Kr by k colors, there is a monochromatic copy of Hi in color i for some 1 ≤ i ≤ k. In this paper, we investigate the multicolor Ramsey number r(K2,t, . . . ,K2,t,Km), determining the asymptotic behavior up to a polylogarithmic factor for almost all ranges of t ...

متن کامل

On the Ramsey numbers for linear forest versus some graphs

For given graphs G and H; the Ramsey number R(G;H) is the leastnatural number n such that for every graph F of order n the followingcondition holds: either F contains G or the complement of F contains H.In this paper firstly, we determine Ramsey number for union of pathswith respect to sunflower graphs, For m ≥ 3, the sunflower graph SFmis a graph on 2m + 1 vertices obtained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2023

ISSN: ['1435-5914', '0911-0119']

DOI: https://doi.org/10.1007/s00373-023-02625-z